TEACHING SCHEDULE 2019-2020

SEMESTER: II

CLASS: F.Y.B.Sc.

SUBJECT: PHYSICS

COURSE TITLE: HEAT & THERMODYNAMICS [CORE]

COURSE CODE: PHY-II.C-3

DAYS & TIME: FRIDAY [08.30am – 09.30am] [13:30 – 14:30]

SATURDAY [13:30 - 14:30],

Lecture	Topic/subtopic	Reference List	Page
No.			No.
1	1. Thermometry: Review of concept of heat and temperature, Thermometry, Types of thermometers.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	489-491
2	Types of thermometers contd. Centrigrade, Fahrenheit, Rankine Scales and relations between them.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	491-493
3	Liquid thermometers, Errors and corrections in a mercury thermometer.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	494-496
4	Advantages of gas thermometer,	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> <u>Thermodynamics and</u>	496-498

	Constant volume air thermometer, constant pressure air thermometer.	Statistical Physics, S. Chand (2007)	
5	Platinum resistance thermometer, thermoelectricity, Seebeck effect, Peltier effect, Thomson effect.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	498-501
6	Thermoelectric thermometer (thermocouple). Problems.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	501-504
7	2. Equation of State: Introduction, equation of state, different kinds of equations of state.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> <u>Thermodynamics and</u> <u>Statistical Physics</u> , S. Chand (2007)	48-54
8	Andrews' experiment, results of Andrews' experiment, critical constants, definitions of critical temperature, critical pressure, critical volume.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	48-54
9	Amagat's experiment, results of Amagat's experiment.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	48-54
10	Van der Waals' equation of state, Correction for finite size of molecule, correction for intermolecular attraction.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	57-60

11	Discussion of Van der Waals' equation, defects of Van der Waals' equation, determination of a and b in Van der Waals' equation.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	57-60
12	Derivation of critical constants, reduced equation of state, Boyle temperature.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	57-60
13	Problems on equation of state.		
14	3. Laws of thermodynamics: Thermodynamic system, Thermodynamic variables, Thermodynamic equilibrium, and Thermodynamic processes.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	107-111
15	Zeroth law of thermodynamics, Concept of work and internal energy, First law of thermodynamics. Mathematical statement.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	107-112
16	Isothermal and adiabatic changes, Work done in isothermal and adiabatic changes.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	120-124
17	Relation between pressure, volume and temperature in adiabatic process.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	120-124

18	Problem solving using formula for		
	P _C , V _C , and T _C .		
19	Problem solving using formula for		
	P _c , V _c , and T _c .		
20	Reversible and irreversible	Brijlal, Subramanyam N.,	132-134
	processes, illustrations of	Hemne P.S., <u>Heat</u>	
	irreversible processes.	Thermodynamics and Statistical Physics. S.	
		Statistical Physics, S. Chand (2007)	
		Chana (2007)	
21	Heat engines, Carnot's engine.	Brijlal, Subramanyam N.,	132-134
		Hemne P.S., <u>Heat</u>	
		Thermodynamics and	
		Statistical Physics, S. Chand (2007)	
		Chana (2007)	
22	Carnot's engine.	Brijlal, Subramanyam N.,	132-134
	Efficiency of heat engine.	Hemne P.S., <u>Heat</u>	
		Thermodynamics and	
		Statistical Physics, S. Chand (2007)	
		Chana (2007)	
23	Reversibility of Carnot's engine.	Brijlal, Subramanyam N.,	139-140
		Hemne P.S., <u>Heat</u>	
		Thermodynamics and	
		Statistical Physics, S. Chand (2007)	
		Chana (2007)	
24	Second law of thermodynamics.	Brijlal, Subramanyam N.,	139-140
	Clausius statement, Kelvin-Planck	Hemne P.S., <u>Heat</u>	
	statement.	Thermodynamics and	
	6	Statistical Physics, S. Chand (2007)	
	Carnot's theorem and proof	Chana (2007)	

25	Thermodynamic scale of temperature.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	183-187
26	Clausius – Clapeyron equation, First latent heat equation.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	224-225
27	Second latent heat equation.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	224-225
28	Problem solving on efficiency of Carnot's engine.		
29	4. Applications of first and second law of thermodynamics: Applications of first law of thermodynamics.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	115
30	Description of Otto engine	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	143-145
31	Expression for efficiency of Otto engine	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	143-145

32	Problems on Otto engine	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	
33	Description of Diesel engine	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	145-148
34	Expression for efficiency of Diesel engine	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	145-148
35	Problems on Diesel engine		
36	Comparison between Diesel and Otto engine. Introduction to refrigerator, Principle of refrigerator,	Saha M.N., Shrivastava B.N., <u>Treatise on Heat</u> , The Indian Press (1965)	
37	Coefficient of performance of refrigerator.	Saha M.N., Shrivastava B.N., <u>Treatise on Heat</u> , The Indian Press (1965)	
38	Principle of air conditioning	Saha M.N., Shrivastava B.N., <u>Treatise on Heat</u> , The Indian Press (1965)	
39	Comfort chart of A.C. machine, Factors affecting size and capacity of A.C. machine.	Saha M.N., Shrivastava B.N., <u>Treatise on Heat</u> , The Indian Press (1965)	

			4=0 :
40	5. Concept of Entropy: Changes of entropy during reversible and irreversible process.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	173,176- 177
41	Temperature – Entropy diagram, Temperature – Entropy diagram of Carnot's cycle.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	179, 181
42	Physical significance of Entropy, Entropy of a perfect gas.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	177, 180
43	Principle of increase of entropy.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	187-190
44	Third law of thermodynamics.	Brijlal, Subramanyam N., Hemne P.S., <u>Heat</u> Thermodynamics and Statistical Physics, S. Chand (2007)	187-190
45	Problem solving		
46	Problem solving		